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Fig. 3. The foreshortening of a half-wave stripline resonator as a function of the

stripling wavelength for some values of the strip width., All dimensions are
normalized to the ground-plane spacing.
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Tig. 4. The relative decrease in the characteristic impedance caused by the end
effects of half-wave stripline resonators as a function of the stripline wavelength
for some values of the strip width. All dimensions are normalized to the ground-
plane spacing.

walls have been moved away far enough so their influence on the re-
sults is restricted to the fourth or fifth digit. It is seen that the
dynamic foreshortening increases for decreasing resonator length in
contrary to the static theory, but is less than the static foreshortening
given by (1).

In the diagram in Fig. 4 the relative decrease in the characteristic
impedance caused by the end effects is plotted versus the stripline
wavelength for some widths of the strips.

The results may also be used for other open-ended stripline con-
figurations, such as N\/4 stubs, if one takes half the foreshortening in
Fig. 3 at every open end of the stripline.

Measurements of the foreshortenings are presented in Fig. 5 to-
gether with the corresponding theoretical curves. The foreshortenings
have been obtained by measuring the resonance frequencies of strip-
line resonators. Even if the foreshortening is independent of the rela-
tive dielectric constant of the board, the resonance frequency is
not. Thus, when we obtain the foreshortenings from the resonance
frequencies, the relative dielectric constant is critical. The manu-
facturer of the stripline board used states that ¢, =2.62 +0.05. The
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Fig. 5. Measured data points and theoretical curves of the foreshortening as a

function of the strip width (logarithmic scale) for some values of the strip length,
All dimensions are normalized to the ground-plane spacing.

points have been calculated by using the value 2.62. For narrow
strips the agreement is good between theory and practice, but for
broader strips the difference is greater. This may depend on the as-
sumption that the current on the strip is laminar all the way to its
ends. This is true for a narrow strip, but for a wider strip the current
bends to the center at the ends of the strip. This bending makes the
current path longer, which will contribute to the foreshortening.
Measurements on a slotted strip showed less foreshortening, con-
firming the current bending theory. Contributory reasons for the
difference between theory and practice are the uncertainty of e,
(2.65 had been more advantageous), the finite thickness of the strip,
and the air spacing between the boards caused thereby.
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Maximum Phase-Locking Bandwidth Obtainable by
Injection Locking

LENNART GUSTAFSSON, K. INGEMAR LUNDSTROM,
anp G. H. BERTIL HANSSON

Abstract—A simple rule is presented for the determination of the
locking region of an oscillator with a general tuning circuit.

During the last few years a number of articles have treated the
theoretical aspects of injection locking [1]-[6]. Reference is often
made to an early paper by Adler [7], whereas the basic work by Van
der Pol [8] is often neglected. Van der Pol made a thorough study
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of an oscillator consisting of a single-tuned circuit and a third-order
nonlinearity. He derived |[8, p. 72] the stability borders for this
oscillator with an externally applied signal. These stability borders
are the same as those given in [5] and [6] for that special case. Van
der Pol’s method of studying stability could be applied to general
tuning circuits and nonlinarities, although this, to our knowledge,
has not been done.

In [4] and [S] stability criteria valid for small as well as large
injected signals were derived, using a series expansion of the ad-
mittance of the active element. Two border lines between stable and
unstable locking were introduced, called the boundary and locus
curve, respectively, using la notation introduced by Golay [1], who
studied the stability of a gegenerative single-tuned oscillator. It was

pointed out in [1] that the locus curve corresponded to 8P;,/04 =0,
where Pi, is the injected power and 4 the amplitude of the RF vol-
tage across the active ele lent.

In [6] stability was tested by introducing infinitesimal syn-
chronous and nonsynchronous perturbations in the steady-state
solution of the voltage dcross the nonlinear element. These per-
turbations were then analgrzed with the aid of the corresponding in-
cremental input describing function (IIDF). These IIDF’s can al-
ways be derived from the single sinusoid describing function (DF)
which in its first approxi ‘ation is the same concept as the nonlinear
admittance or impedanca used in microwave theory. The stability
borders are those curves iﬁl the amplitude—frequency diagram of the
oscillator (Figs. 1 and 2) at which the introduced perturbation will
neither increase nor decrease. It was found that the locus curve cor-
responds to the synchroni)us perturbation and the boundary curve
to the nonsynchronous perturbation. The methods in [53] and [6]
yielded results that were identical for small frequency deviations and
almost identical for larger frequency deviations. The discrepancy
between the results for lar‘ger frequency deviations is most likely ex-
plained by the fact that a|series expansion is done in [5] around the
main (injected) frequency, and for larger frequency deviations the
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“surviving” perturbation will not occur at that frequency and will
therefore be determined slightly incorrectly. The main difference
between the method of [6] and Van der Pol's [8] is that in [6] the
type of perturbation which “survives” at the stability borders and
thereby the behavior of the oscillator at the border of stable locking,
is also obtained.

The purpose of this short paper is to show that for a general oscil-
lator one of these stability borders—the locus curve—is cut by the
constant input power curves where these latter are vertical, i.e., at
the maximum obtainable locking bandwidths (for those input powers
where such maxima exist) for a certain injected power. Since the re-
maining stability border—the boundary curve—is very easy to
obtain with the aid of the nonsynchronous IIDF, this reduces the
computational labor to assess whether a computed stationary state
is stable or not.

We restrict our treatment to those cases where the self-oscilla-
tion, from which we want to obtain a frequency deviation by means
of injection locking, is in itself stable,

To prove the preceding rule concerning the locus curve we first
examine the circuit equation for a phase-locked oscillator with a
general tuning circuit; the equation [6, eq. 9] is

N4, el e Lo L

GrTu(jo)+Tu(jw) A GrTu(jor)+Tau(jwr)

where N is the describing function (DF) of the nonlinear active ele-
ment, 4 is the RF voltage across that element, «, is the frequency of
the injected current, Gy is the load, Ty, Tie, Ta, and T are the ele-
ments of the voltage—current transmission matrix for the linear
tuning circuit, I, is the amplitude of the injected current, and 6 is
the phase difference between the injected current and the RF vol-
tage across the nonlinear element. N may be regarded as the non-
linear admittance of the active element for a single-frequency RF
voltage. No restrictions on the nature of the active element are
made—it may contain nonlinear conductances as well as nonlinear
susceptances, e.g., of the kind caused by the transit time effects in
avalanche diodes,

The study is restricted to the stability of single-frequency opera-
tion; this is implicit in (1) where only one frequency «, is included.
The bias circuit is assumed to be ideal, otherwise an equation deter-
mining the variation in bias level should be introduced.

It is easily seen that (1) can be written in the following way

I, .
Nie +jNo + Go +jBs = 2P (76 (2

where
Ne= Ny +jNjo = N(4, 1) (Gr.T12(jwr) + Tao(jer))
and
Ge + 7Be = GrTu(jor) + Taljwr).

From (2) we obtain

A ((Nve + G)* + (Njs + B = 1.2 ®
and
_ NJB + Eu;
tan g = N..+G. 4)

For a constant injected amplitude I, but varying frequency, we find

N 3G dN,, 0B,
4 ((Nre+Ge) (I"—:’)—*) +(NN+B¢) ( ! +—a‘;))
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We now test the stability of the locked oscillator with a synchronous
perturbation, i.e., a perturbation with frequency w;. At the border
of stable locking we have from [6, eq. (11) and (12)]

ON+e ny ON;e
84 A
where @ is an angle, the physical meaning of which is unimportant
in this context, since we will eliminate it.

N+A Ve
Y

A
Nout it 5 ) @+ exp () + 6o+ B = 0 (©)

(1 + exp (j2))
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is the IIDF for a synchronous perturbation. Separating (6) into real
and imaginary parts and eliminating ® yields

N ON e
(NretGo)?*+ (NyetBo)2+ A i (NVre+-Go)+ A ;j (Nje-+B)=0. (1)

We observe that the border of stable locking determined by a
synchronous perturbation is equivalent to

04 O

—— =0 or ~— =0

Ow 04
from (3).

This means that if 4 is plotted versus w for a constant injected
amplitude I,, the locking becomes unstable just at the maximum
frequency deviation (in those cases where such a maximum deviation
exists); this was implicit in [4]-[6] but not explicitly stated. Note
that we have no restrictions on the injected amplitude I, or the fre-
quency deviation, still the maximum frequency deviation determines
a stable state, as long as such a maximum exists and lies in the region
which is indicated as stable by the boundary curve(s). In view of the
above we can restrict our study of stability to the use of nonsyn-
chronous perturbations, which is usually an exceedingly simple
matter; the border of stability is determined by [4, eq. (14) and (15)]:

A ON.,
N70+Gs+~2‘ aA —0 (8)
A ONj,
o+ By + =0.
Njo+ Bs + 7 o4 0 )]

The above discussion is illustrated in Figs. 1 and 2 where typical
stability border curves are drawn for oscillators having nonlinear
conductance and both nonlinear conductance and susceptance, re-
spectively. ‘

Van der Pol was aware of the rule concerning the locus curve for
the particular oscillator which he studied. Since his method does not,
however, allow for separation into different kinds of perturbations,
this insight could not be practically applied.

The boundary curve is not necessarily single valued. It is, for
instance, quite possible to have an oscillator which becomes stably
locked when the amplitude crosses the lower boundary curve and then
becomes unstably locked again if the injected power is increased so
that the amplitude crosses the upper boundary curve.

It is to be noted that whereas the curves for constant injected
amplitude are vertical at their intersections with the stability border
determined by the synchronous perturbation (“the locus curve”),
no such relationship exists regarding the stability border determined
with nonsynchronous perturbations (“the boundary curve”).

Our discussion has related to amplitudes; it is easily shown that
identical relations can be established for the phase 8 (i.e., 9w /30 =0
at the border of stable locking determined by a synchronous per-
turbation). Concerning the output power it should be noted that
34 /8w— = (synchronous stability border) corresponds to 9Pgu/dw
— o provided that

A? 9N,
Need + —
+ 2 94

# 0.

Finally, it should be noticed that for an oscillator having a non-
linear susceptance it is very likely that the power required to bring
an unlocked oscillator to a locked state for some frequencies exceeds
that required to keep a locked oscillator in a locked state at the same
frequencies. Our results pertain to the latter case. No information
about the additional power required in the former case can be ob-
tained by the use of synchronous and nonsynchronous perturba-
tions.

The following simple rule has thus been established for the de-
termination of the stable locking region (“holding” region) of an
oscillator with a general tuning circuit. If, for a given injected am-
plitude, there exist points where dw/3A4 =0, these points determine
the locking range, unless these points lie in the region which is un-
stable as determined by a nonsynchronous perturbation (8) and (9).
This is valid irrespective of the magnitude of the frequency deviation
from the free-running frequency. It should perhaps be pointed out
that the technique described here can be used to study amplifiers as
well, since the describing function introduced also describes an am-
plifier.
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Broad-Band Twisted-Wire Quadrature Hybrids
R. E. FISHER

Abstract—A symmetrical 3-dB quadrature hybrid, consisting
chiefly of a bifilar pair of twisted wires, is described. A cascade of
two such hybrids can achieve an octave bandwidth with a 0.7-dB
coupling error. Since this class of hybrid is simple, compact, and low
in cost, its use may be preferred over the more common coaxial line
or printed-circuit types in the frequency region below 1 GHz.

I. INTRODUCTION

The concept of using twisted wires wrapped upon ferrite toroids
to form compact, asymmetric, 180° hybrids was first introduced
by Ruthroff [1]. It has also been found by several other investigators
[2]-[4] that twisted-wire structures can be made to function as
symmetric, 3-dB quadrature (90°) hybrids, thus permitting the con-
struction of compact directional couplers at arbitrarily low fre-
quencies.

Examples of twisted-wire quadrature hybrids centered at ap-
proximately 7 and 300 MHz are shown schematically and pictorially
in Figs. 1, 2, and 5. For both hybrids, the coupling section consists of
two strands of insulated copper magnet wire tightly twisted together
to form a bifilar pair. For the 7-MHz hybrid shown in Fig. 2, the
pair is wrapped upon a small ferrite toroid which is then soldered to
four BNC along with two mica capacitors. For the 225-400-MHz
two-stage hybrid shown in Fig. 5, where much less inductance is re-
quired, the wire pairs are bent into loops, and then soldered onto an
epoxy fiberglass circuit board along with four omni-spectra-miniature
(OSM) connectors.

II. SINGLE-STAGE HYBRID DESIGN

Consider Fig. 1. If terminal 1 is connected to terminal 2, and
terminal 3 is connected to terminal 4, the resulting two-terminal
network is now simply a lumped inductance L, since the magnetic
coefficient of coupling between the twisted wires is nearly unity.

If terminal 1 is connected to terminal 4, and terminal 2 is con-
nected to terminal 3, this different two-terminal network can be ap-
proximated by a lumped capacitor C, which is the sum of the inter-
winding capacitance and the external capacitors. At UHF, the ex-
ternal capacitors may not be required.

The 4-port will display hybrid properties when

n=yL 6

Equal power division between ports 2 and 4 will occur at a frequency
fo where

1
L=--=27
SE T
wo = 2xfo. (2
The transducer loss between ports 1 and 2 is
P, wo\?
=1 pate 3
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