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Fig. 3. The foreshortening of a half-wave stripline resonator as a functionof the
stripline wavelength for some values of the strip wldlh. All dimensions are
normalized to the ground-plane spacing.
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Fig. 4. The relative decrease in the characteristic impedance caused by the en”d
effects of half-wave stripline resonators as a f unct ion of the stripline wavelength
for some values of the strip width. All dimensions are normalized to the ground-
plane spacing.

walls have been moved away far enough so their influence on the re-
sults is restricted to the fourth or fifth digit. It is seen that the

dynamic foreshortening increases fordecreasing resonator length in
contrary to the static theory, but is less than the static foreshortening
given by (l).

In the diagram in Fig. 4 the relative decrease in the characteristic

impedance caused by the end effects is plotted versus the stripline

wavelength for some widths of the strips.
Theresults may also be used for other open-ended stripline con-

figurations, such ask/4 stubs, if one takes half the foreshortening in
Fig. 3 at every open end of the stripline.

Measurements of the foreshortenings are presented in Fig. 5 to-

gether with the corresponding theoretical curves. The foreshortenings
have been obtained by measuring the resonance frequencies of strip-
line resonators. Even if the foreshortening is independent of the rela-

tive dielectric constant of the board, the resonance frequency is
not. Thus, when we obtain the foreshortenings from the resonance
frequencies, the relative dielectric constant is critical. The manu-
facturerof thestripline board used states that e.=2.62f0.05. The
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Fig. 5. Measured data points and theoretical curves of the foreshortening as a
function of the strip width (logarithmic scale) for some values of the strip length.
Alldimensions are normalized totheground-plane spacing.

points have been calculated by using the value 2.62. For narrow

strips the agreement is good between theory and practice, but for

broader strips the difference is greater. This may depend on the as-
sumption that the current on the strip is laminar all the way to its
ends. This is true fora narrow strip, but forawider strip the current

bends to the center at the ends of the strip. This bending makes the
current path longer, which will contribute to the foreshortening.
Measurements on a slotted strip showed less foreshortening, con-
firming the current bending theory. Contributory reasons for the

difference between theory and practice are the uncertainty of C.
(2.65 had been more advantageous), the finite thickness of the strip,

and theairspacing between the boards caused thereby.

REFERENCES

[1] H, M. Altschuler and A. A. Oliner, “DiscontinuMesin thecenterco nductorof
symmetric strip transmission line, ” IRE Trans. Microwave Theory Tech., vol.
MTT-8, PP. 328-339, MaY 1960.

r21 R. Lazerlof. `'Striufinefed slots, "in P?oc. 1971 Etiropean Mi&owave Conf., vol. l,.
[3] ~~,lf~~timal design ofcavity backed slotantennas," Chimers Univ. of Tech-

nol. Div. of Network Theory, Rep. TR 7203, Mar. 1972.
[4] W. C. Hahn, “A method for the calculation of cavity resonators, ” J. AMA

Phys., vol. 12, pp. 62–68, 1941.
[5] S. B. Cohn, “Analysis of a wide-band waveguide filter,’ Proc. IRE, vol. 37,

pp.651-656, June 1949.
[6] S. B. Cohrl, uSlotline onadielectric substrate, "IEEE Tvax$. M6cvowav. T{&eoFy

Tech., vol. MTT-17, pp. 768–778, Oct. 1969.
[7] R. E. Collie, F{eld Th.o#yoj Guzd.d Waws. New York: McGraw-Hill, 1960,

[8] ~.5fi~rcuvitz~ ~Vauegt~ide Hafidbook (M.I.T, Rad. Lab, Ser.), vol. 10. New
York: McGraw-Hill, 1951, PP. 218-219.

Maximum Phase-Locking Bandwidth Obtainable by

Injection Locking

LENNART GUSTAFSSON, K. INGEMAR LUNDSTR~M,
AND G. H. BERTIL HANSSON

Absfracf—A simple rule is presented for the determination of the
locking region of an oscillator with a general tuning circuit.

During the last few years a number of articles have treated the
theoretical aspects of injection locking [1 ]– [6 ]. Reference is often
made to an early paper by Adler [7], whereas the basic work by Van

der Pol [8] is often neglected. Van der Pol made a thorough study
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“surviving” perturbation will not occur at that frequency and will
therefore be determined slightly incorrectly. The main difference
between the method of [6] and Van der Pol’s [8] is that in [6] the
type of perturbation which “survives” at the stability borders and
thereby the behavior of the oscillator at the border of stable locking,
is also obtained.

The purpose of this short paper is to show that for a general oscil-

lator one of these stability borders—the locus curve—is cut by the
constant input power curves where these latter are vertical, i.e., at

the maximum obtainable locking bandwidths (for those input powers
where such maxima exist) for a certain injected power. Since the re-

maining stability border—the boundary cume—is very easy to

obtain with the aid of the nonsynchronous II DF, this reduces the
computational labor to assess whether a computed stationary state
is stable or not.

We restrict our treatment to those cases where the self-oscilla-
tion, from which we want to obtain a frequency deviation by means

of injection locking, is in itself stable.
To prove the preceding rule concerning the 10CUS curve we first

examine the circuit equation for a phase-locked oscillator with a
general tuning circuit; the equation [6, eq. 9] is

GLT12(jco1)+T22 (jcu1) Ie 1
N(A, COJ = — exp (@)

GIYI@)+Tz,(jw) A GL~ll(.icLu)+~21 (j-LI1)

(1)

where N is the describing function (DF) of the nonlinear active ele-
ment, A is the RF voltage across that element, COlis the frequency of

the injected current, GL is the load, Tll, Tlz, T21, and T2.zare the ele-
ments of the voltag~current transmission matrix for the linear

tuning circuit, 1. is the amplitude of the injected current, and o is
the phase difference between the injected current and the RF vol-
tage across the nonlinear element. N may be regarded as the non-
linear admittance of the active element for a single-frequency RF

voltage. No restrictions on the nature of the active element are
made—it may contain nonlinear conductance as well as nonlinear

susceptances, e.g., of the kind caused by the transit time effects in

avalanche diodes.
The study is restricted to the stability of single-frequency opera-

tion; this is implicit in (1) where only one frequency COlis included.
The bias circuit is assumed to be ideal, otherwise an equation deter-

mining the variation in bias level should be introduced.
It is easily seen that (1) can be written in the following way
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where

N, = N,, + jNie = N(A, co,) (GLTM(jco,) + Tn(jm))

and

G. +jBe = G~Tn(@,) + Tz,(jw).

From (2) we obtain

(3)A2((N.. + G.)z + (Nje + Be) 2, = 1.2

and

N,. + Be
tant?=—

N,, +~”
(4)

For a constant injected amplitude 1. but varying frequency, we find

aA A((N+GJ(%+3‘(Nf8+Be)(%+:%))
aw

(N,,+GJ2+ (N,,+ BJ’+A ~ (Nr,+GJ +A ~ (N,.+BJ

(5)

We now test the stability of the locked oscillator with a synchronous

perturbation, i.e., a perturbation with frequency al. At the border
of stable locking we have from [6, eq. (11) and (12)]

where @ is an angle, the physical meaning of which is unimportant
in this context, since we will eliminate it.
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is the II DF for a synchronous perturbation. Separating (6) into real

and imaginary parts and eliminating @ yields

We observe that the border of stable locking determined by a
synchronous perturbation is equivalent to

aA au
=03 or –—=0

au 8A

from (.5).
This means that if A is plotted versus aI for a constant injected

amplitude 1,, the locking becomes unstable just at the maximum
frequency deviation (in those cases where such a maximum deviation

exists); this was implicit in [4]- [6 ] but not explicitly stated. Note

that we have no restrictions on the injected amplitude 1. or the fre-
quency deviation, still the maximum frequency deviation determines

a stable state, as long as such a maximum exists and lies in the region
which is indicated as stable by the boundary curve(s). In view of the
above we can restrict our study of stability to the use of nonsyn-

chronous perturbations, which is usually an exceedingly simple
matter; the border of stability is determined by [4, eq. (14) and (15)]:

A aN,,
N,. +G, +zm=O

A dNj, ~
Ni, +B, +———

2 aA=’

(8)

(9)

Theabove discussion isillustrated in Figs. 1 and2 where typical

stability border curves are drawn for oscillators having nonlinear

conductance and both nonlinear conductance and susceptance, re-
spective y.

Van der Pol was aware of the rule concerning the locus curve for

theparticular oscillator which restudied. Since hismethod does not,
however, allow for separation into different kinds of perturbations,

this insight could not be practically applied.
The boundary curve is not necessarily single valued. It is, for

instance, quite possible to have an oscillator which becomes stably

locked when the amplitude crosses the lower boundary curve and then

becomes unstably locked again if the injected power is increased so
that the amplitude crosses the upper boundary curve.

It is to be noted that whereas the curves for constant injected

amplitude are vertical at their intersections with the stability border
determined by the synchronous perturbation (“the locus curve”),
nosuchrelationship exists regarding the stability border determined

with nonsynchronous perturbations (“the boundary curve”).
Our discussion has related to amplitudes; it is easily shown that

identical relations can be established for the phase o (i.e., Ek/W=O
at the border of stable locking determined by a synchronous per-
turbation). Concerning the output power it should be noted that

t)A/&r+m (synchronous stability border) corresponds to aP..t/a~

+CO provided that

N,eA + _A:%
2 aA+O’

Finally, it should be noticed that foranoscillator having anon-

linear susceptanceit isvery likely that the power required to bring
an unlocked oscillator to a locked state for some frequencies exceeds
that required tokeepa locked oscillator in a locked state at the same
frequencies. Our results pertain to the latter case. No information
about the additional power required in the former case can be ob-
tained by the use of synchronous and nonsynchronous perturba-
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Broad-Band Twisted-Wire Quadrature Hybrids

R. E. FISHER

Abstract—A symmetrical 3-dB quadrature hybrid, consisting
chiefly of a bitilar pair of twisted wires, is described. A cascade of

two such hybrids can achieve an octave bandwidth with a 0.7-dB

coupliig error. Since this class of hybrid is simple, compact, and low

in cost, its use maybe preferred over the more common coaxial line

or printed-circuit types h the frequency region below 1 GHz.

I. INTRODUCTION

The concept of using twisted wires wrapped upon ferrite toroids

to form compact, asymmetric, 180° hybrids was first introduced

by Ruthroff [1]. It has also been found by several other investigators
[2]- [4] that twisted-wire structures can be made to function as

symmetric, 3-dB quadrature (90°) hybrids, thus permitting the con-
struction of compact directional couplers at arbitrarily low fre-
quencies.

Examples of twisted-wire quadrature hybrids centered at ap-
proximately 7 and 300 MHz are shown schematically and pictorially

in Figs. 1, 2, and 5. For both hybrids, the coupling section consists of

two strands of insulated copper magnet wire tightly twisted together
to form a bifilar pair. For the 7-MHz hybrid shown in Fig. 2, the

pair is wrapped upon a small ferrite toroid which is then soldered to
four BNC along with two mica capacitors. For the 225400-MHz

two-stage hybrid shown in Fig. 5, where much less inductance is re-
quired, the wire pairs are bent into loops, and then soldered onto an

epoxy fiberglass circuit board along with four omni-spectra-miniature
(OSM) connectors.

II. SINGLE-STAGE HYBRID DESIGN

Consider Fig. 1. If terminal 1 is connected to terminal 2, and

terminal 3 is connected to terminal 4, the resulting two-terminal

network is now simply a lumped inductance L, since the magnetic

coefficient of coupling bstween the twisted wires is nearly unity.

If terminal 1 is connected to terminal 4, and terminal 2 is con-

nected to terminal 3, this different two-terminal network can be ap-

proximated by a lumped capacitor c, which is the sum of the inter-

winding capacitance and the external capacitors. At UHF, the ex-
ternal capacitors may not be required.

The 4-port will display hybrid properties when

/

T
z,= ~. (1)

Equal power division between ports 2 and 4 will occur at a frequency

.fo where
tions.

The following simple rule has thus been established for the de-
1

termination of the stable locking region (“holding” region) of an
oOL = –— = z~

Wjc

oscillator with a general tuning circuit. If, for a given injected am- coo = 2Tfo.
plitude, there exist points where &o/8A = O, these points determine

the locking range, unless these points lie in the region which is un- The transducer 10SSbetween ports 1 and 2 is

(2)

stable as determined by a nonsynchronous perturb~tion (8) and (9). PI
This is valid irrespective of the magnitude of the frequency deviation

()

2
—=1+ N (3)

from the free-running frequency. It should perhaps be pointed out
P, m

that the technia ue described here can be used to studv amplifiers as. .
well, since the describing function introduced also describes an am-
plifier,
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